5 класс
1. общеобразовательный-5а,5в, углубленный-5в
2. Математика: учебник для 5 кл. общеобразовательных учреждений под редакцией Г.В. Дорофеева, И.Ф. Шарыгина: М.: Просвещение, 2012г. и последующие.
Г. В. Дорофеев, И. Ф. Шарыгин, С. Б. Суворова и др. Программа по математике. 5-6 класс.
3. 5а,5в-5часов, 5б-5часов+1,5ч(факультатив)
4. Линии (7 часов) Натуральные числа (13 часов) Действия с натуральными числами (24 часа) Использование свойств действий при вычислениях (12 часов) Многоугольники (7 часов) Делимость чисел (15 часов) Треугольники и четырехугольники (9 часов) Дроби (20 часов) Действия с дробями (35 часов) Многогранники (10 часов) Таблицы и диаграммы (8 часов) Повторение (10 часов) Требования к планируемым результатам изучения программы.
5. Личностные результаты:
у учащихся будут сформированы:
˗ ответственного отношения к учению;
˗ готовности и спо¬собности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
˗ умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
˗ начальные навыки адаптации в динамично изменяющемся мире;
˗ экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровьесберегающего поведения;
˗ формирования способности к эмоциональному вос¬приятию математических объектов, задач, решений, рассуж¬дений.
˗ умения контролировать процесс и результат учебной ма¬тематической деятельности;
у учащихся могут быть сформированы:
˗ первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
˗ коммуникативная компетентность в об¬щении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творче¬ской и других видах деятельности;
˗ критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
˗ креативности мышления, инициативы, находчивости, активности при решении арифметических задач.
Метапредметные результаты:
регулятивные УУД
учащиеся научатся:
˗ формулировать и удерживать учебную задачу;
˗ выбирать действия в соответствии с поставленной задачей и условиями её реализации;
˗ планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
˗ предвидеть уровень освоения знаний, его временных характеристик;
˗ составлять план и последовательность действий;
˗ осуществлять контроль по образцу и вносить не¬обходимые коррективы;
˗ адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
˗ сличать способ действия и его результат с эталоном с целью обнаружения отклонений и отличий от эталона;
учащиеся получат возможность научиться:
˗ определять последовательность промежуточных целей и соответствующих им действий с учетом конечного результата;
˗ предвидеть возможности получения конкретного результата при решении задач;
˗ выделять и осознавать того, что уже усвоено и что еще подлежит усвоению, осознавать качество и уровень усвоения, давать самооценку своей деятельности;
˗ концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий.
Познавательные УУД:
учащиеся научатся:
˗ самостоятельно выделять и формулировать познавательные цели;
˗ использовать общие приемы решения задач;
˗ применять правила и пользоваться инструкциями, освоенными закономерностями;
˗ осуществлять смысловое чтение;
˗ создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
˗ самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
˗ понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;
˗ умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
˗ умения находить в различных источниках, в том числе контролируемом пространстве Интернета, информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
учащиеся получат возможность научиться:
˗ устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктив¬ные, дедуктивные) и выводы;
˗ формирования учебной и обще пользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
˗ видеть математическую задачу в других дисциплинах, в окружающей жизни;
˗ выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
˗ планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
˗ осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
˗ интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
˗ оценивать информацию (критическая оценка, оценка достоверности);
˗ устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения.
Коммуникативные УУД
учащиеся получат возможность научиться:
˗ организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
˗ взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов, слушать партнёра, формулировать, аргументировать и отстаивать своё мнение;
˗ прогнозировать возникновение конфликтов при наличии разных точек зрения;
˗ разрешать конфликты на основе учета интересов и позиций всех участников;
˗ координировать и принимать различные позиции во взаимодействии;
˗ аргументировать свою позицию и координировать её с позициями партнеров в сотрудничестве при выборе общего решения в совместной деятельности.
Предметные результаты
№ |
Наименование разделов и тем |
Дидактические единицы образовательного процесса |
|
ученик научится |
ученик получит возможность |
||
5 класс |
|||
1 |
Линии |
- распознавать на чертежах, рисунках, моделях прямую, части прямой, окружность; - приводить примеры аналогов прямой и окружности в окружающем мире; - измерять с помощью линейки и сравнивать длины отрезков; - строить отрезки заданной длины с помощью линейки и циркуля, проводить окружности заданного радиуса; - выражать одни единицы измерения длин отрезков через другие;
|
- решать занимательные задачи |
2 |
Натуральные числа и нуль. Действия с натуральными числами. |
-понимать особенности десятичной системы исчисления; - описывать свойства натурального ряда; - читать и записывать многозначные числа; - отмечать на координатном луче натуральные числа; сравнивать натуральные числа с помощью координатного луча; - владеть понятиями, связанными с делимостью натуральных чисел; - сравнивать и упорядочивать натуральные числа; - выполнять вычисления с натуральными числами, вычислять значения степеней, сочетая устные и письменные приемы вычислений, применять калькулятор; - формулировать законы арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения, применять их для рационального счета; - уметь решать задачи на понимание отношенийбольше на..», «меньше на…», «больше в ..», «меньше в…», а также понимание стандартных ситуаций, в которых используется слова «всего», «осталось» и т. П.; типовыезадачи «на части», нахождение двух чисел по сумме и разности; - решать задачи на движение и движение по реке; |
- познакомиться с позиционными системами счисления с основаниями, отличными от 10; - углубить и развить представления о натуральных числах и свойствах делимости; - научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для вычисления способ; - анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, моделировать условие с помощью реальных предметов, схем, рисунков; строить логическую цепочку рассуждений; критически оценивать ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию; - решать математические задачи и задачи из смежных предметов, выполнять несложные практические расчёты, решать занимательные задачи. |
2 |
Многоугольники. Треугольники и четырёхугольники. Многогранники |
- распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры (в том числе треугольники и четырёхугольники) - изображать геометрические фигуры от руки и с помощью чертежных инструментов; - распознаватьи строить разверстки куба, прямоугольного параллелепипеда, пирамиды; - измерять с помощью транспортира и сравнивать величины углов, строить с помощью транспортира углы заданной величины; - вычислять: периметр треугольника, четырехугольника; площадь прямоугольника, квадрата; объем прямоугольного параллелепипеда, куба; - выражать одни единицы длины, площади, объёма, массы, времени через другие; - моделировать многоугольники и многогранники, используя бумагу, пластилин, проволоку и др.; |
- вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов; - углубить и развить представления о пространственных геометрических фигурах; - применять понятие развёртки для выполнения практических расчётов; - изготавливать пространственные фигуры из разверток; - исследовать и описыватьсвойства многоугольников и многогранников путём эксперимента, наблюдения, моделирования, в том числе с использованием компьютерных программ - решать занимательные задачи |
3 |
Делимость натуральных чисел |
- формулировать определения делителя и кратного, простого и составного числа, свойства и признаки делимости чисел; - использовать свойства и признаки делимости при доказательстве делимости натуральных чисел и числовых выражений; - пользоваться таблицей простых чисел; - пользоваться правилами делимости суммы и разности чиселдля рационализации вычислений; - находить: делители натурального числа, наибольший общий делитель, кратные числа, наименьшее общее кратное; - раскладывать число на простые множители |
-решать задачи с использованием четности и свойств делимости чисел; - изучить исторический материал по теме; - решать занимательные задачи |
4 |
Дроби. Действия с дробями |
- моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби; - записывать и читать обыкновенные дроби; соотносить дроби и точки на координатной прямой; - сокращать дроби, записывать дробь равную данной, проводить дроби к общему знаменателю, сравнивать дроби всех видов, выполнять все арифметические действия с дробями всех видов, превращать правильную дробь в неправильную, выделять целую часть у неправильной дроби, различать фигуры симметричные относительно плоскости. - решать задачи: находить часть от числа, нахождение числа по его части, на совместную работу, на движение по реке; - использовать для рационализации вычислений: законы сложения, умножения, распределительный закон; - изображатьдроби всех видов на координатном луче; - употреблять термины: случайные, достоверные, невозможные, равновероятные события, приводить примеры. |
- проводитьне сложные доказательные рассуждения с опорой на законы арифметических действий для дробей; - решать сложные задачи на движение, на дроби, на совместную работу, на движение по воде; - изучить исторический материал по теме; - решать исторические, занимательные задачи; - объяснять значимостьмаловероятных событий в зависимости от их последствий. |
5 |
Таблицы и диаграммы |
- анализировать готовые таблицы и диаграммы; - сравнивать между собой данные, характеризующие некоторые явления или процессы; |
- выполнять сбор информациив несложных случаях; - заполнять таблицы, используя инструкции |
6 |
Итоговое повторение курса математики 5 класса |
- выполнять устно и письменно арифметические действия над числами; - находить в несложных случаях значения степеней с целыми показателями; - находить значения числовых выражений; - решать текстовые задачи, данные в которых выражены обыкновенными дробями, - использовать приобретенные знания и умения в практической деятельности и повседневной жизни. |
- использовать математические формулы; - применять полученные знания для решения математических и практических задач
|
6 класс
1. 6а,б,в-общеобразовательный, 6г-коррекционно-развивающий
2. Математика» для шестого класса образовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбург –-М. Мнемозина, 2012-2015 гг.
Программа общеобразовательных учреждений. Математика 5-6 классы. Составитель Бурмистрова Т.А, М, Просвещение, 2009г
3. 6а, 6б (5+1), 6в (5+0.5), 6г (5+0,5)
4.
№ |
Раздел |
Кол-во часов |
В т.ч. контр. работ |
1 |
Делимость чисел |
20 |
1 |
2 |
Сложение и вычитание дробей с разными знаменателями |
22 |
2 |
3 |
Умножение и деление обыкновенных дробей |
32 |
3 |
4 |
Отношения и пропорции |
19 |
2 |
5 |
Положительные и отрицательные числа |
13 |
1 |
6 |
Сложение и вычитание положительных и отрицательных чисел |
11 |
1 |
7 |
Умножение и деление положительных и отрицательных чисел |
12 |
1 |
8 |
Решение уравнений |
15 |
2 |
9 |
Координаты на плоскости |
13 |
1 |
|
Итоговое повторение курса 6 класса |
13 |
1 |
|
ИТОГО |
170 |
15 |
5. Требования к уровню подготовки учащихся
В результате изучения курса математики 6 классы учащиеся должны:
- правильно употреблять термины, связанные с различными видами чисел и способами их записи: цельное, дробное, десятичная дробь, переход от одной формы записи к другой (например, проценты в виде десятичной дроби; выделение целой части из неправильной дроби); решать три основные задачи на дроби;
- сравнивать числа, упорядочивать наборы чисел, понимать связь отношений «больше», «меньше» с расположением точек на координатной прямой;
- выполнять арифметические действия с натуральными числами и десятичными дробями;
- распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, треугольники, многоугольники, окружность, круг); изображать указанные геометрические фигуры; владеть практическими навыками использования геометрических инструментов для построения и измерения отрезков и углов;
- владеть навыками вычисления по формулам, знать основные единицы измерения и уметь перейти от одних единиц измерения к другим в соответствии с условиями задачи;
- находить числовые значения буквенных выражений.
7 класс
1. 7а,7б,7в,7г
2. 7б,7г-общеобразовательные, 7а=углубленный, 7в-коррекционно-развивающий
3. Учебники-Макарычев Ю.Н., Миндюк Н.Г. Нешков К.И., Суворова С.Б. Алгебра. 7 класс. М. Просвещение. 2014г. и «Геометрия» для 7-9 классов образовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.– М., «Просвещение», 2013 -2015 гг.
Данная программа разработана на основе федерального компонента образовательного стандарта образовательной области «Математика». За основу данной программы взяты «Программы общеобразовательных учреждений» под редакцией Бурмистровой Т.А. - М., «Просвещение», 2009. и программы авторского коллектива Ю.Н. Макарычева, Н.Г.Миндюк, К.И.Нешкова, С.Б.Суворовой, которые ориентирована на учащихся 7 классов.
4. 7а (5+2), 7б (5+1), 7в (5+0,5), 7г (5)
5.
№ |
Раздел |
Кол-во часов |
В т.ч. контр. работ |
Выражения, тождества, уравнения. |
22 |
2 |
|
Начальные геометрические сведения. |
10 |
1 |
|
Функции. |
11 |
1 |
|
Степень с натуральным показателем. |
14 |
1 |
|
Треугольник. |
18 |
1 |
|
Многочлены. |
19 |
2 |
|
Параллельные прямые. |
12 |
1 |
|
Формулы сокращённого умножения. |
19 |
2 |
|
Соотношения между сторонами и углами треугольника |
20 |
2 |
|
Системы линейных уравнений. |
14 |
1 |
|
|
Итоговое повторение курса 7 класса |
11 |
1 |
|
ИТОГО |
170 |
15 |
5. В результате изучения алгебры ученик должен
знать/понимать
- что такое буквенные и алгебраические выражение; как осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое;
- что такое степень с натуральным показателем и её свойства;
- какая функция называется линейной и строить её график;
- что такое многочлены и как выполняются действия с многочленами;
- формулы сокращённого умножения;
- что такое системы линейных уравнений и способы их решения;
- составлять буквенные выражения и формулы по условиям задач, осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с натуральным показателем, с многочленами; выполнять тождественные преобразования целых выражений; выполнять разложение многочленов на множители;
- решать линейные уравнения и уравнения, сводящиеся к ним, системы двух линейных уравнений,
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- изображать числа точками на координатной прямой
- определять координаты точки плоскости, строить точки с заданными координатами;
- находить значение функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- описывать свойства изученных функций (y = kx + b, y = kx, y = x2, y = x3) и строить их графики.
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчётов по формулам, составления формул, выражающих зависимость между реальными величинами; нахождения нужной формулы в справочных материалах
- моделирования практических ситуаций и исследование построенных моделей с использованием аппарата алгебры; описания зависимости между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
В результате изучения геометрии ученик должен
- знать/понимать
- что такое прямая, точка, какая фигура называется отрезком, лучом, углом; определения вертикальных смежных углов;
- признаки равенства треугольников, теоремы о свойствах равнобедренного треугольника; определения медианы, высоты, биссектрисы треугольника; определение окружности;
- формулировки и доказательство теорем, выражающих признаки параллельности прямых;
- теорему о сумме углов в треугольнике и ее следствия; классификацию треугольников по углам; формулировки признаков равенства прямоугольных треугольников; определения наклонной, расстояния от точки до прямой.
- уметь
- изображать точки, лучи, отрезки, углы и прямые обозначать их; сравнивать отрезки и углы работать с транспортиром и масштабной линейкой; строить смежные и вертикальные углы;
- применять теоремы в решении задач; строить и распознавать медианы, высоты, биссектрисы; выполнять с помощью циркуля и линейки построения биссектрисы угла, отрезка равного данному середины отрезка, прямую перпендикулярную данной;
- распознавать на рисунке пары односторонних и соответственных углов, делать вывод о параллельности прямых;
- доказывать и применять теоремы в решении задач, строить треугольник по трем элементам.
8 класс
1. математика
2. 8а,8б,8в
3. общеобразовательные-8б,8в, коррекционно-развивающий-8а
4. Учебники-Макарычев Ю.Н., Миндюк Н.Г. Нешков К.И., Суворова С.Б. Алгебра. 8 класс. М. Просвещение. 2014г. и «Геометрия» для 7-9 классов образовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.– М., «Просвещение», 2013 -2015 гг.
Данная программа разработана на основе федерального компонента образовательного стандарта образовательной области «Математика». За основу данной программы взяты «Программы общеобразовательных учреждений» под редакцией Бурмистровой Т.А. - М., «Просвещение», 2009. и программы авторского коллектива Ю.Н. Макарычева, Н.Г.Миндюк, К.И.Нешкова, С.Б.Суворовой, которые ориентирована на учащихся 8классов
5. 8а(5+0,5), 8б(5+1),8в(5)
6.
№ |
Раздел |
Кол-во часов |
В т.ч. контр. работ |
Рациональные дроби |
23 |
2 |
|
Четырехугольники |
14 |
1 |
|
Квадратные корни |
19 |
2 |
|
Площади фигур |
16 |
1 |
|
Квадратные уравнения |
21 |
2 |
|
Подобные треугольники |
20 |
2 |
|
Неравенства |
20 |
2 |
|
Окружность |
17 |
1 |
|
Степень с целым показателем. Элементы статистики. |
11 |
1 |
|
|
Итоговое повторение курса 8 класса |
9 |
1 |
|
ИТОГО |
170 |
15 |
7. В результате изучения алгебры ученик должен
- знать/понимать
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
- уметь
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;
- решать линейные неравенства с одной переменной и их системы;
- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
В результате изучения геометрии ученик должен
- уметь
- распознавать геометрические фигуры, различать их взаимное расположение;
- выполнять чертежи по условиям задач;
- изображать геометрические фигуры; осуществлять преобразования фигур;
- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения,
- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования. Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- исследования несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычислений площадей фигур при решении практических задач.
Требования к ЗУН представлены и в тематическом плане по каждой теме.
решать следующие жизненно-практические задачи:
- самостоятельно приобретать и применять знания в различных ситуациях;
- работать в группах;
- аргументировать и отстаивать свою точку зрения;
- уметь слушать других; извлекать учебную информацию на основе сопоставительного анализа объектов;
- пользоваться предметным указателем энциклопедий и справочников для нахождения информации
9 класс
1.математика
2.9а.9б,9в
3.общеобразовательные
4. Учебники-Макарычев Ю.Н., Миндюк Н.Г. Нешков К.И., Суворова С.Б. Алгебра. 9 класс. М. Просвещение. 2014г. и «Геометрия» для 7-9 классов образовательных учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.– М., «Просвещение», 2013 -2015 гг.
Данная программа разработана на основе федерального компонента образовательного стандарта образовательной области «Математика». За основу данной программы взяты «Программы общеобразовательных учреждений» под редакцией Бурмистровой Т.А. - М., «Просвещение», 2009. и программы авторского коллектива Ю.Н. Макарычева, Н.Г.Миндюк, К.И.Нешкова, С.Б.Суворовой, которые ориентирована на учащихся 9 классов
5.9а(5+0,5), 9б,в(5+1)
6.
с |
Раздел |
Кол-во часов |
В т.ч. контр. работ |
Векторы. |
10 |
1 |
|
Метод координат. |
10 |
1 |
|
Квадратичная функция |
22 |
2 |
|
Соотношения между сторонами и углами треугольника. |
13 |
1 |
|
Уравнения и неравенства с одной переменной |
14 |
1 |
|
Уравнения и неравенства с двумя переменными |
17 |
1 |
|
Длина окружности и площадь круга. |
13 |
1 |
|
Арифметическая и геометрическая прогрессии . |
16 |
2 |
|
Движения. |
12 |
1 |
|
Элементы комбинаторики, статистики и теории вероятностей. |
13 |
1 |
|
Начальные сведения из стереометрии. |
8 |
- |
|
|
Итоговое повторение курса 9 класса |
22 |
1 |
|
ИТОГО |
170 |
13 |
7. В результате изучения арифметики ученик должен
- уметь:
- выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить значения степеней с целыми и дробными показателями и корней; находить значения числовых выражений;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
решения несложных практических расчётных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;
- устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приёмов;
- интерпретации результатов решения задач с учётом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
В результате изучения алгебры ученик должен
- Уметь:
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
- решать линейные и квадратные неравенства с одной переменной и их системы;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;
- изображать числа точками на координатной прямой;
- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
- находить значения функции, заданной формулой, таблицей, графиком, по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
В результате изучения элементов логики, комбинаторики, статистики и теории вероятностей
ученик должен
- Уметь:
- извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и трафики;
- решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;
- вычислять средние значения результатов измерений;
- находить частоту события, используя собственные наблюдения и готовые статистические данные;
- находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выстраивания аргументации при доказательстве (в форме монолога и диалога);
- распознавания логически некорректных рассуждений;
- записи математических утверждений, доказательств;
- анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
- решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
- решения учебных и практических задач, требующих систематического перебора вариантов;
- сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
- понимания статистических утверждений.
В результате изучения курса геометрии ученик должен
- уметь:
- пользоваться геометрическим языком для описания предметов окружающего мира;
- распознавать геометрические фигуры, различать их взаимное расположение;
- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;
- вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
- решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
- решать простейшие планиметрические задачи в пространстве.
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
10 класс
- математика
- 10 класс
- Общеобразовательный
4. Рабочая программа разработана в соответствии с Федеральным компонентом государственного стандарта среднего (полного) общего образования на основе Примерной программы среднего (полного) общего образования по Математике, примерных программ по математике Э.Д. Днепрова и А.Г. Мордковича.
Программа соответствует учебнику Мордкович А. Г. Алгебра и начала анализа. 10-11 классы: учебник / А. Г. Мордкович. - М.: Мнемозина, 2012-2015..и учебнику Погопелова Геометрия 10-11 классы, М.Посвещение, 2012-2015г.
- 10 класс(5+1)
№ |
Раздел |
Кол-во часов |
В т.ч. контр. работ |
Числовые функции. Тригонометрические функции |
33 |
2 |
|
Аксиомы стереометрии и их простейшие следствия |
8 |
- |
|
Тригонометрические уравнения |
10 |
1 |
|
Параллельность прямых и плоскостей |
18 |
2 |
|
Преобразования тригонометрических выражений |
21 |
2 |
|
Перпендикулярность прямых и плоскостей |
20 |
1 |
|
Производная |
35 |
2 |
|
8. |
Декартовы координаты и векторы в пространстве |
15 |
1 |
9. |
Обобщающее итоговое повторение курса 10 класса |
10 |
1 |
|
ИТОГО |
170 |
12 |
7. В результате изучения математики на базовом уровне ученик должен
знать/понимать:
– значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
– значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
– универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
– вероятностный характер различных процессов окружающего мира;
Алгебра
уметь:
– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
– проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы и тригонометрические функции;
– вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции и графики
уметь:
– определять значение функции по значению аргумента при различных способах задания функции;
– строить графики изученных функций;
– описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
– решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь:
– вычислять производные элементарных функций, используя справочные материалы;
– исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
уметь:
– решать рациональные уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
– составлять уравнения и неравенства по условию задачи;
– использовать для приближенного решения уравнений и неравенств графический метод;
– изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для построения и исследования простейших математических моделей;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
– для анализа реальных числовых данных, представленных в виде диаграмм, графиков;
– анализа информации статистического характера;
владеть компетенциями:
– учебно-познавательной;
– ценностно-ориентационной;
– рефлексивной;
– коммуникативной;
– информационной;
– социально-трудовой.
ГЕОМЕТРИЯ
Уметь:
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
- для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
11 класс
1.математика
2.11 класс
3.общеобразовательный
4. Рабочая программа разработана в соответствии с Федеральным компонентом государственного стандарта среднего (полного) общего образования на основе Примерной программы среднего (полного) общего образования по Математике, примерных программ по математике Э.Д. Днепрова и А.Г. Мордковича.
Программа соответствует учебнику Мордкович А. Г. Алгебра и начала анализа. 10-11 классы: учебник / А. Г. Мордкович. - М.: Мнемозина, 2012-2015г. И учебнику геометрия 10-11 классы, М.Просвещение, 2012-2015
5.11класс(4+2)
6.
№ |
Раздел |
Кол-во часов |
В т.ч. контр. работ |
1 |
Степени и корни. Степенные функции |
16 |
2 |
2 |
Многогранники |
13 |
2 |
3 |
Показательная и логарифмическая функции |
28 |
2 |
4 |
Тела вращения |
15 |
1 |
5 |
Первообразная и интеграл |
10 |
1 |
6 |
Объемы многогранников |
13 |
1 |
7 |
Элементы комбинаторики, статистики и теории вероятностей |
20 |
1 |
8 |
Объемы и поверхности тел вращения |
15 |
1 |
9 |
Уравнения и неравенства. Системы уравнений и неравенств. |
27 |
2 |
10 |
Заключительное повторение при подготовке к итоговой аттестации |
13 |
1 |
|
ИТОГО |
170 |
14 |
7. В результате изучения математики на базовом уровне ученик должен
знать/понимать
- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
- вероятностный характер различных процессов окружающего мира;
Алгебра
уметь
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
- проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
- вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;
Функции
уметь
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций;
- описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
- решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;
Начала математического анализа
уметь
- вычислять производные и первообразные элементарных функций, используя справочные материалы;
- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
- вычислять в простейших случаях площади с использованием первообразной;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;
Уравнения и неравенства
уметь
- решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
- составлять уравнения и неравенства по условию задачи;
- использовать для приближенного решения уравнений и неравенств графический метод;
- изображать на координатной плоскости множества решений простейших уравнений и их систем;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- построения и исследования простейших математических моделей;
Элементы комбинаторики, статистики и теории вероятностей
уметь
- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
- вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- анализа реальных числовых данных, представленных в виде диаграмм, графиков;
- анализа информации статистического характера;
ГЕОМЕТРИЯ
Уметь:
- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
- для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.